

Cornell University

Rarefaction Fans and Dynamic Factoring in Eikonal Equation

Dongping Qi, Alexander Vladimirsky

Center for Applied Mathematics Cornell University

July 16, 2019, ICIAM

Dongping Qi, Alexander Vladimirsky - Rarefaction Fans and Dynamic Factoring in Eikonal Equation

Cornell University

1 Rarefaction Fans in Eikonal Solution.

- 2 Dynamic Factoring Techniques.
- 3 Maze Navigation & Permeable Obstacles.

4 Other Uses.

Outline

Cornell University

1 Rarefaction Fans in Eikonal Solution.

- 2 Dynamic Factoring Techniques.
- 3 Maze Navigation & Permeable Obstacles.

4 Other Uses.

Isotropic Maze Navigation

Cornell University

Numerical artifacts at the source and corners.

Isotropic Maze Navigation

Cornell University

Numerical artifacts at the source and corners.

Rarefaction Fans in Eikonal Solution

Cornell University

$$\begin{cases} |\nabla u(\mathbf{x})| F(\mathbf{x}) = 1, & \mathbf{x} \in \Omega, \\ u(\mathbf{x}) = 0, & \mathbf{x} = \mathbf{x}_0 \end{cases}$$

F(x, y) = 0.5x + 0.5. $u(\mathbf{x}) = 2 \operatorname{acosh} (1 + 0.25F(\mathbf{x})|\mathbf{x}|).[\mathsf{FLZ09}, \mathsf{LQ12}]$

Dongping Qi, Alexander Vladimirsky - Rarefaction Fans and Dynamic Factoring in Eikonal Equation

4/28

Rarefaction Fans in Eikonal Solution

Cornell University

$$\begin{cases} |\nabla u(\mathbf{x})| F(\mathbf{x}) = 1, & \mathbf{x} \in \Omega, \\ u(\mathbf{x}) = 0, & \mathbf{x} = \mathbf{x}_0. \end{cases}$$

F(x,y) = 0.5x + 0.5. $u(\mathbf{x}) = 2\mathsf{a}\mathsf{cosh}\,(1 + 0.25F(\mathbf{x})|\mathbf{x}|).[\mathsf{FLZ09}, \ \mathsf{LQ12}]$

Dongping Qi, Alexander Vladimirsky - Rarefaction Fans and Dynamic Factoring in Eikonal Equation

Singularities in Second-Order Derivatives

Cornell University

If $F(\mathbf{x}) = 1$ and $\mathbf{x}_0 = (0, 0)$,

$$u(\mathbf{x}) = |\mathbf{x}| = \sqrt{x^2 + y^2}.$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{y^2}{(x^2 + y^2)^{3/2}}, \qquad \frac{\partial^2 u}{\partial y^2} = \frac{x^2}{(x^2 + y^2)^{3/2}},$$

$$\frac{\partial^2 u}{\partial x^2} \to \infty, \quad \frac{\partial^2 u}{\partial y^2} \to \infty, \quad x, y \to 0$$

Singularities in Second-Order Derivatives

Cornell University

If
$$F(\mathbf{x}) = 1$$
 and $\mathbf{x}_0 = (0, 0)$,

$$u(\mathbf{x}) = |\mathbf{x}| = \sqrt{x^2 + y^2}.$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{y^2}{(x^2 + y^2)^{3/2}}, \qquad \frac{\partial^2 u}{\partial y^2} = \frac{x^2}{(x^2 + y^2)^{3/2}},$$

$$\frac{\partial^2 u}{\partial x^2} \to \infty, \quad \frac{\partial^2 u}{\partial y^2} \to \infty, \quad x, y \to 0$$

Singularities in Second-Order Derivatives

Cornell University

If
$$F(\mathbf{x}) = 1$$
 and $\mathbf{x}_0 = (0, 0)$,

$$u(\mathbf{x}) = |\mathbf{x}| = \sqrt{x^2 + y^2}.$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{y^2}{(x^2 + y^2)^{3/2}}, \qquad \frac{\partial^2 u}{\partial y^2} = \frac{x^2}{(x^2 + y^2)^{3/2}},$$

$$\frac{\partial^2 u}{\partial x^2} \to \infty, \quad \frac{\partial^2 u}{\partial y^2} \to \infty, \quad x, y \to 0$$

Singularities in Second-Order Derivatives

Cornell University

If
$$F(\mathbf{x}) = 1$$
 and $\mathbf{x}_0 = (0, 0)$,

$$u(\mathbf{x}) = |\mathbf{x}| = \sqrt{x^2 + y^2}.$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{y^2}{(x^2 + y^2)^{3/2}}, \qquad \frac{\partial^2 u}{\partial y^2} = \frac{x^2}{(x^2 + y^2)^{3/2}},$$

$$\frac{\partial^2 u}{\partial x^2} \to \infty, \quad \frac{\partial^2 u}{\partial y^2} \to \infty, \quad x, y \to 0$$

Cornell University

1 Rarefaction Fans in Eikonal Solution.

2 Dynamic Factoring Techniques.

3 Maze Navigation & Permeable Obstacles.

4 Other Uses.

Factored Eikonal Equation

Cornell University

Asymptotic behavior of *u*:

$$u(\mathbf{x}) \approx T(\mathbf{x}) = \frac{|\mathbf{x} - \tilde{\mathbf{x}}_0|}{F(\tilde{\mathbf{x}}_0)}.$$

 $\tilde{\mathbf{x}}_0$ is the source of rarefaction fan.

Additive factoring
$$(u = T + \tau)$$
 [LQ12]
 $|\nabla T(\mathbf{x}) + \nabla \tau(\mathbf{x})|F(\mathbf{x}) = 1.$

Multiplicative factoring $(u = T\tau)$ [LQ12, FLZ09, TH16]

 $|\nabla T(\mathbf{x})\tau(\mathbf{x}) + T(\mathbf{x})\nabla\tau(\mathbf{x})|F(\mathbf{x}) = 1.$

Factored Eikonal Equation

Cornell University

Asymptotic behavior of u:

$$u(\mathbf{x}) \approx T(\mathbf{x}) = \frac{|\mathbf{x} - \tilde{\mathbf{x}}_0|}{F(\tilde{\mathbf{x}}_0)}.$$

 $\tilde{\mathbf{x}}_0$ is the source of rarefaction fan.

Additive factoring
$$(u = T + \tau)$$
 [LQ12]
 $|\nabla T(\mathbf{x}) + \nabla \tau(\mathbf{x})|F(\mathbf{x}) = 1.$

Multiplicative factoring $(u = T\tau)$ [LQ12, FLZ09, TH16]

 $|\nabla T(\mathbf{x})\tau(\mathbf{x}) + T(\mathbf{x})\nabla\tau(\mathbf{x})|F(\mathbf{x}) = 1.$

Factored Eikonal Equation

Cases Global Factoring is Not The Best

Cases Global Factoring is Not The Best

Obstacle Induced Rarefaction Fans

Dynamic Factoring Kernel

Cornell University

$$T(\mathbf{x}) = \begin{cases} \frac{|\mathbf{x} - \tilde{\mathbf{x}}|}{F(\tilde{\mathbf{x}})}, & \mathbf{x} \in S_0\\ \\ \frac{(-\mathbf{a}) \cdot (\mathbf{x} - \tilde{\mathbf{x}})}{F(\tilde{\mathbf{x}})}, & \mathbf{x} \in S_1. \end{cases}$$

Dongping Qi, Alexander Vladimirsky - Rarefaction Fans and Dynamic Factoring in Eikonal Equation

Cornell University

1 Rarefaction Fans in Eikonal Solution.

- 2 Dynamic Factoring Techniques.
- 3 Maze Navigation & Permeable Obstacles.

4 Other Uses.

Maze Navigation

Cornell University

F(x,y) = 1.

Maze Navigation

Cornell University

Dongping Qi, Alexander Vladimirsky - Rarefaction Fans and Dynamic Factoring in Eikonal Equation

Maze Navigation

Cornell University

 $F(x, y) = 1 + 0.5\sin(2\pi x)\sin(2\pi y).$

Maze Navigation

Maze Navigation: Convergence

Cornell University

Dongping Qi, Alexander Vladimirsky - Rarefaction Fans and Dynamic Factoring in Eikonal Equation

Discontinuous Speed Function

Rarefaction Fans in Eikonal Solution. Dynamic Factoring Techniques. Maze Navigation & Permeable Obstacles. Other Uses Determine Rarefaction Region by Snell's Warnell University

Factoring Kernel

Cornell University

$$T(\mathbf{x}) = \begin{cases} \frac{|\mathbf{x} - \tilde{\mathbf{x}}|}{F(\tilde{\mathbf{x}})}, & \mathbf{x} \in S_0\\ \frac{(-\mathbf{a}) \cdot (\mathbf{x} - \tilde{\mathbf{x}})}{F(\tilde{\mathbf{x}})}, & \mathbf{x} \in S_1\\ \frac{(-\mathbf{b}) \cdot (\mathbf{x} - \tilde{\mathbf{x}})}{F(\tilde{\mathbf{x}})}, & \mathbf{x} \in S_2. \end{cases}$$

Dongping Qi, Alexander Vladimirsky - Rarefaction Fans and Dynamic Factoring in Eikonal Equation

19/28

Single Permeable Obstacle

Several Permeable Obstacles

Outline

Cornell University

1 Rarefaction Fans in Eikonal Solution.

- 2 Dynamic Factoring Techniques.
- 3 Maze Navigation & Permeable Obstacles.

4 Other Uses.

Inhomogeneous Permeable Obstacle

Discontinuous Boundary Condition

Conclusion

Cornell University

- Rarefaction fans may appear due to isolated sources, non-smooth obstacles (boundaries) or discontinuous boundary conditions.
- 2 Dynamic factoring can discover rarefaction fans automatically and help remove numerical artifacts.

Future works: [QV19]

- 1 Anisotropic speed function;
- 2 Polygonal or curved-boundary obstacles;
- **3** 3D "rarefying edges"?

References I

Cornell University

Sergey Fomel, Songting Luo, and Hongkai Zhao. Fast sweeping method for the factored eikonal equation. Journal of Computational Physics, 228(17):6440–6455, 200

Songting Luo and Jianliang Qian.

Fast sweeping methods for factored anisotropic eikonal equations: multiplicative and additive factors.

Journal of Scientific Computing, 52(2):360-382, 2012.

Dongping Qi and Alexander Vladimirsky. Corner cases, singularities, and dynamic factoring. *Journal of Scientific Computing*, 79(3):1456–1476, Jun 2019.

Eran Treister and Eldad Haber.

A fast marching algorithm for the factored eikonal equation. *Journal of Computational Physics*, 324:210–225, 2016.

