Surveillance Evasion Through Bayesian Reinforcement Learning

Dongping Qi, David Bindel, Alex Vladimirsky

Center for Applied Mathematics
Cornell University

March 27, 2023

1 Problem Setting

2 Proposed Algorithms

3 Existing Discrete Algorithms

4 Numerical Results

Evasion Under Known Surveillance

Evasion Under Known Surveillance

Evasion Under Unknown Surveillance

Suppose $K(\boldsymbol{x})$ is unknown to the Evader:

- A good continuous model to reconstruct $K(\boldsymbol{x})$.
- Strategically learn $K(\boldsymbol{x})$ \& find the true optimal path eventually.

Define a capture indicator

$$
\Delta_{i}= \begin{cases}1, & \text { if } \mathrm{E} \text { is captured in ith episode } ; \\ 0, & \text { otherwise }\end{cases}
$$

Experimentally observed excess rate of captures (regret):

$$
\mathfrak{S}_{j}=\frac{1}{j} \sum_{i=1}^{j} \Delta_{i}-W_{*}, \quad j=1, \cdots, T
$$

where $W_{*}=$ capture probability along the optimal path.

1 Problem Setting

2 Proposed Algorithms

3 Existing Discrete Algorithms

4 Numerical Results

Continuously Modeled Algorithms

Alg-PC: piecewise-constant model
Initialize model \& parameters;
for $t=1: T$ do

$$
\begin{aligned}
& \hat{K}(\boldsymbol{x})= \\
& \exp \left(\tilde{Z}(\boldsymbol{x})-\sqrt{\ln (T|\mathcal{G}| / \gamma)} \tilde{\sigma}_{Z}(\boldsymbol{x})\right)
\end{aligned}
$$

Planning according to $\hat{K}(\boldsymbol{x})$; Simulate \hat{K}-optimal path; Update statistics $\left(\tilde{Z}, \tilde{\sigma}_{Z}\right)$.

- Domain decomposition \mathcal{G};
- Data are used locally for estimation;
- $\tilde{Z}, \tilde{\sigma}_{Z}$ are piecewise-constant.
- Ignores the correlations between K values in different cells.

Alg-GP: GP-regression model
Initialize model \& parameters;
for $t=1: T$ do

$$
\begin{aligned}
& \hat{K}(\boldsymbol{x})= \\
& \exp (M(\boldsymbol{x})-\sqrt{\ln (T|\mathcal{G}| / \gamma)} \rho(\boldsymbol{x})) ;
\end{aligned}
$$

Planning according to $\hat{K}(\boldsymbol{x})$; Simulate \hat{K}-optimal path; Update statistics $\left(\tilde{Z}, \tilde{\sigma}_{Z}\right)$; Update posterior $(M(\boldsymbol{x}), \rho(\boldsymbol{x}))$; Hyperparameter tuning every 1000 episodes.

- $\tilde{Z}, \tilde{\sigma}_{Z}$ values are inputs of GP at cell centers;

■ Squared exponential kernel:

$$
\Sigma\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\alpha \exp \left(-\frac{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{2}}{\beta^{2}}\right)
$$

■ Matérn kernel (ν controls differentiability of GP):

$$
\Sigma\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\alpha \frac{2^{1-\nu}}{\Gamma(\nu)}\left(\sqrt{2 \nu}\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| / \beta\right)^{\nu} B_{\nu}\left(\sqrt{2 \nu}\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right| / \beta\right) .
$$

(α, β) are hyperparameters which need tuning.

Exploration v.s. Exploitation

Confidence bound encouraged intensity/planning cost(Alg-PC):

$$
\hat{K}(\boldsymbol{x})=\exp (\underbrace{\tilde{Z}(\boldsymbol{x})}_{\text {exploitation motive }}-\underbrace{\sqrt{\ln (T|\mathcal{G}| / \gamma)} \tilde{\sigma}_{Z}(\boldsymbol{x})}_{\text {exploration bonus }}) .
$$

Similarly for Alg-GP:

$$
\hat{K}(\boldsymbol{x})=\exp (M(\boldsymbol{x})-\sqrt{\ln (T|\mathcal{G}| / \gamma)} \rho(\boldsymbol{x})) .
$$

The constant term $\sqrt{\ln (T|\mathcal{G}| / \gamma)}$ is inspired by a discrete algorithm Alg-D (with a proven regret bound).

1 Problem Setting

2 Proposed Algorithms

3 Existing Discrete Algorithms

4 Numerical Results

A graph version of SE:

- Assume an "edge capture probability" Ψ_{e}.
- Shortest path problem with edge cost $-\log \left(1-\Psi_{e}\right)$.

Alg-D (inspired by [AOM17]):

- A confidence bound modification:

$$
\hat{\Psi}_{e}=-\log \left(1-\tilde{\Psi}_{e}\right)-\sqrt{\frac{\ln (T|\mathcal{E}| / \gamma)}{\max \left(N_{e}, 1\right)}}
$$

and truncate $\hat{\Psi}_{e}$ to be positive if needed.
■ A regret bound of order $\mathcal{O}(1 / \sqrt{T})$ can be proven.

- Degrees of nodes have to grow to obtain all directions of motion in the continuous setting.

An MDP version of SE

- Adding a "captured state".
- A capture induces a unit cost.

Upper Confidence Bounds on Trees[KS06]:
■ Model-free, directly attempts to learn state-action value Q_{e}.

- Select actions according to

$$
\hat{e}=\underset{e \in \mathcal{E}(v)}{\arg \min } \tilde{Q}_{e}-\lambda \sqrt{\frac{\ln \left(N_{v}\right)}{\max \left(N_{e}, 1\right)}}
$$

- Inefficient data usage, slow convergence.

Cornell University

1 Problem Setting
2 Proposed Algorithms
3 Existing Discrete Algorithms
4 Numerical Results

captures \& learned path, 15 k episodes

Performance Metric Results

Examples with Non-smooth Intensity

Choose Matérn kernel with $\nu=5 / 2$:

- We consider a continuous path planning problem with unknown surveillance intensity.
■ Our proposed algorithms apply confidence bound techniques to tackle the exploration-exploitation dilemma.
- Alg-GP takes advantage of the spatial correlations in $K(\boldsymbol{x})$ and results in faster learning.

Most important future extension:

- Regret bound for Alg-PC and Alg-GP?

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos.
Minimax regret bounds for reinforcement learning.
In International Conference on Machine Learning, pages 263-272. PMLR, 2017.
茥
Levente Kocsis and Csaba Szepesvári.
Bandit based monte-carlo planning.
In Machine Learning: ECML 2006: 17th European Conference on Machine Learning Berlin, Germany, September 18-22, 2006 Proceedings 17, pages 282-293. Springer, 2006.
captures \& learned path, 15k episodes

GP posterior STD

Appendix: GP Posterior Update

- Denote the cells satisfying Criteria* as $\mathcal{G}_{\mathrm{ob}}$. $\mathcal{G}_{\mathrm{ob}}$'s centers are X_{ob}.
- Let $\tilde{Z}_{\mathrm{ob}}, \tilde{\sigma}_{\mathrm{ob}}$ be $\tilde{Z}, \tilde{\sigma}_{Z}$ values at X_{ob} reshaped as vectors.
- Use $\tilde{\Sigma}$ as an abbreviation of $\left[\Sigma_{\mathrm{ob}}+\operatorname{diag}\left(\tilde{\sigma}_{\mathrm{ob}}\right)\right]$.

GP update

Posterior mean update

$$
M(\boldsymbol{x})=m(\boldsymbol{x})+\Sigma\left(\boldsymbol{x}, X_{\mathrm{ob}}\right) \tilde{\Sigma}^{-1}\left[\tilde{Z}_{\mathrm{ob}}-m\left(X_{\mathrm{ob}}\right)\right]
$$

Posterior covariance update

$$
\rho^{2}(\boldsymbol{x})=\Sigma(\boldsymbol{x}, \boldsymbol{x})-\Sigma\left(\boldsymbol{x}, X_{\mathrm{ob}}\right) \tilde{\Sigma}^{-1} \Sigma\left(X_{\mathrm{ob}}, \boldsymbol{x}\right) .
$$

Appendix: GP Hyperparameter Tuning

Hyperparameter Tuning
Let $\boldsymbol{z}_{\mathrm{ob}, \mathrm{c}}=\tilde{Z}_{\mathrm{ob}}-m\left(X_{\mathrm{ob}}\right)$ be the vector of centered observations.

$$
\max _{\alpha, \beta>0}-\frac{1}{2} \boldsymbol{z}_{\mathrm{ob}, \mathrm{c}}^{\top} \tilde{\Sigma}^{-1} \boldsymbol{z}_{\mathrm{ob}, \mathrm{c}}-\frac{1}{2} \log |\tilde{\Sigma}|-\frac{n}{2} \log 2 \pi,
$$

Appendix: Approximation Power of GP

- Take a 10×10 decomposition \mathcal{G}.
- Find the average of $K(\boldsymbol{x})$ in each cell and treat it as the K value at the cell center.
- Use these center values as inputs of GP regression to interpolate K.

