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Evasion Under Known Surveillance

P(E is captured before t) = 1− exp
(
−
∫ t

0
K(y(s))ds

)
.
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Evasion Under Unknown Surveillance

Suppose K(x) is unknown to the Evader:

A good continuous model to reconstruct K(x).
Strategically learn K(x) & find the true optimal path eventually.
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Performance Metric

Define a capture indicator

∆i =
{

1, if E is captured in ith episode;
0, otherwise.

Experimentally observed excess rate of captures (regret):

Sj = 1
j

j∑
i=1

∆i −W∗, j = 1, · · · , T

where W∗ = capture probability along the optimal path.
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Continuously Modeled Algorithms

Alg-PC: piecewise-constant model
Initialize model & parameters;
for t = 1 : T do

K̂(x) =

exp
(
Z̃(x)−

√
ln(T |G|/γ)σ̃Z (x)

)
;

Planning according to K̂(x);
Simulate K̂-optimal path;
Update statistics (Z̃, σ̃Z).

Domain decomposition G;
Data are used locally for estimation;
Z̃, σ̃Z are piecewise-constant.
Ignores the correlations between K
values in different cells.

Alg-GP: GP-regression model
Initialize model & parameters;
for t = 1 : T do

K̂(x) =

exp
(
M(x)−

√
ln(T |G|/γ)ρ(x)

)
;

Planning according to K̂(x);
Simulate K̂-optimal path;
Update statistics (Z̃, σ̃Z);
Update posterior (M(x), ρ(x));
Hyperparameter tuning every

1000 episodes.

Z̃, σ̃Z values are inputs of GP at cell
centers;
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Kernels of GP Regression

Squared exponential kernel:

Σ(x,x′) = α exp
(
−|x− x′|2

β2

)
.

Matérn kernel (ν controls differentiability of GP):

Σ(x,x′) = α
21−ν

Γ(ν)

(√
2ν|x− x′|/β

)ν
Bν

(√
2ν|x− x′|/β

)
.

(α, β) are hyperparameters which need tuning.
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Exploration v.s. Exploitation

Confidence bound encouraged intensity/planning cost(Alg-PC):

K̂(x) = exp

 Z̃(x)︸ ︷︷ ︸
exploitation motive

−
√

ln(T |G|/γ)σ̃Z(x)︸ ︷︷ ︸
exploration bonus

 .

Similarly for Alg-GP:

K̂(x) = exp
(
M(x)−

√
ln(T |G|/γ)ρ(x)

)
.

The constant term
√

ln(T |G|/γ) is inspired by a discrete algorithm
Alg-D (with a proven regret bound).
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Alg-D: a Model-based algorithm on Graph

A graph version of SE:
Assume an “edge capture probability” Ψe.
Shortest path problem with edge cost − log(1−Ψe).

Alg-D (inspired by [AOM17]):
A confidence bound modification:

Ψ̂e = − log(1− Ψ̃e)−

√
ln(T |E|/γ)
max(Ne, 1)

and truncate Ψ̂e to be positive if needed.
A regret bound of order O(1/

√
T ) can be proven.

Degrees of nodes have to grow to obtain all directions of motion in
the continuous setting.
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UCT: a Model-free Search Algorithm

An MDP version of SE
Adding a “captured state”.
A capture induces a unit cost.

Upper Confidence Bounds on Trees[KS06]:
Model-free, directly attempts to learn state-action value Qe.
Select actions according to

ê = arg min
e∈E(v)

Q̃e − λ

√
ln(Nv)

max (Ne, 1) .

Inefficient data usage, slow convergence.
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Learning Results of Alg-GP
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Learning Results of Alg-GP
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Performance Metric Results
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Examples with Non-smooth Intensity
Choose Matérn kernel with ν = 5/2:

Dongping Qi, David Bindel, Alex Vladimirsky — Surveillance Evasion Through Bayesian Reinforcement Learning 14/20



Problem Setting Proposed Algorithms Existing Discrete Algorithms Numerical Results

Conclusions

We consider a continuous path planning problem with unknown
surveillance intensity.
Our proposed algorithms apply confidence bound techniques to
tackle the exploration-exploitation dilemma.
Alg-GP takes advantage of the spatial correlations in K(x) and
results in faster learning.

Most important future extension:
Regret bound for Alg-PC and Alg-GP?
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Appendix: GP Posterior STD
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Appendix: GP Posterior Update

- Denote the cells satisfying Criteria* as Gob. Gob’s centers are Xob.
- Let Z̃ob, σ̃ob be Z̃, σ̃Z values at Xob reshaped as vectors.
- Use Σ̃ as an abbreviation of [Σob + diag(σ̃ob)].

GP update
Posterior mean update

M(x) = m(x) + Σ(x, Xob)Σ̃−1[Z̃ob −m(Xob)
]
.

Posterior covariance update
ρ2(x) = Σ(x,x)− Σ(x, Xob)Σ̃−1Σ(Xob,x).
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Appendix: GP Hyperparameter Tuning

Hyperparameter Tuning
Let zob,c = Z̃ob −m(Xob) be the vector of centered observations.

max
α,β>0

−1
2zᵀ

ob,cΣ̃
−1zob,c −

1
2 log |Σ̃| − n

2 log 2π,
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Appendix: Approximation Power of GP

Take a 10× 10 decomposition G.
Find the average of K(x) in each cell and treat it as the K value
at the cell center.
Use these center values as inputs of GP regression to interpolate K.
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