

Cornell University

Surveillance Evasion Through Bayesian Reinforcement Learning

Dongping Qi, David Bindel, Alex Vladimirsky

Center for Applied Mathematics Cornell University

March 27, 2023

Outline

Cornell University

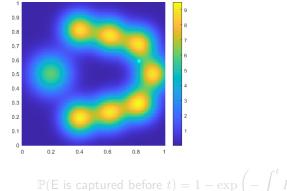
1 Problem Setting

- 2 Proposed Algorithms
- 3 Existing Discrete Algorithms
- 4 Numerical Results

Proposed Algorithms

Existing Discrete Algorithms

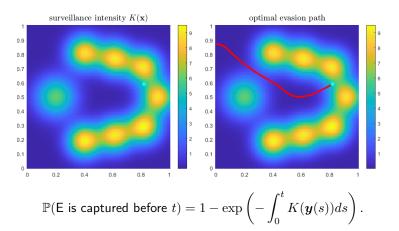
Evasion Under Known Surveillance



Proposed Algorithms

Existing Discrete Algorithms

Evasion Under Known Surveillance

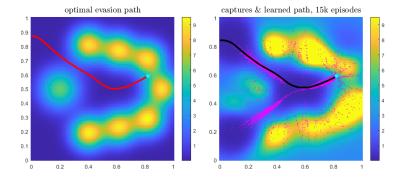


Existing Discrete Algorithms

Evasion Under Unknown Surveillance

Cornell University

Suppose $K(\boldsymbol{x})$ is unknown to the Evader:



- A good continuous model to reconstruct $K(\boldsymbol{x})$.
- Strategically learn $K(\boldsymbol{x})$ & find the true optimal path eventually.

Cornell University

Define a capture indicator

Performance Metric

$$\Delta_i = \begin{cases} 1, & \text{if E is captured in ith episode;} \\ 0, & \text{otherwise.} \end{cases}$$

Experimentally observed excess rate of captures (regret):

$$\mathfrak{S}_j = \frac{1}{j} \sum_{i=1}^j \Delta_i - W_*, \quad j = 1, \cdots, T$$

where $W_* = \text{capture probability along the optimal path.}$

Outline

Cornell University

1 Problem Setting

- 2 Proposed Algorithms
- 3 Existing Discrete Algorithms
- 4 Numerical Results

Continuously Modeled Algorithms

Cornell University

Alg-PC: piecewise-constant model

Initialize model & parameters; for t = 1 : T do $\hat{K}(x) =$

$$\exp\left(ilde{Z}(\boldsymbol{x}) - \sqrt{\ln(T|\mathcal{G}|/\gamma)} ilde{\sigma}_{Z}(\boldsymbol{x})
ight);$$

Planning according to $\hat{K}(x)$; Simulate \hat{K} -optimal path; Update statistics $(\tilde{Z}, \tilde{\sigma}_Z)$.

- Domain decomposition G;
- Data are used locally for estimation;
- $\tilde{Z}, \tilde{\sigma}_Z$ are piecewise-constant.
- Ignores the correlations between K values in different cells.

 $\quad \tilde{Z}, \tilde{\sigma}_Z \text{ values are inputs of GP at cell centers;}$

Kernels of GP Regression

Cornell University

Squared exponential kernel:

$$\Sigma(\boldsymbol{x}, \boldsymbol{x}') = lpha \exp\left(-rac{|\boldsymbol{x} - \boldsymbol{x}'|^2}{eta^2}
ight).$$

Matérn kernel (v controls differentiability of GP):

$$\Sigma(\boldsymbol{x}, \boldsymbol{x}') = \alpha \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} |\boldsymbol{x} - \boldsymbol{x}'| / \beta \right)^{\nu} B_{\nu} \left(\sqrt{2\nu} |\boldsymbol{x} - \boldsymbol{x}'| / \beta \right).$$

 (α,β) are hyperparameters which need tuning.

Exploration v.s. Exploitation

Cornell University

Confidence bound encouraged intensity/planning cost(Alg-PC):

$$\hat{K}(\boldsymbol{x}) = \exp\left(\underbrace{\tilde{Z}(\boldsymbol{x})}_{\text{exploitation motive}} - \underbrace{\sqrt{\ln(T|\mathcal{G}|/\gamma)}\tilde{\sigma}_{Z}(\boldsymbol{x})}_{\text{exploration bonus}}\right)$$

Similarly for Alg-GP:

$$\hat{K}(\boldsymbol{x}) = \exp\left(M(\boldsymbol{x}) - \sqrt{\ln(T|\mathcal{G}|/\gamma)}\rho(\boldsymbol{x})\right).$$

The constant term $\sqrt{\ln(T|\mathcal{G}|/\gamma)}$ is inspired by a discrete algorithm Alg-D (with a proven regret bound).

Outline

Cornell University

1 Problem Setting

- 2 Proposed Algorithms
- 3 Existing Discrete Algorithms
- 4 Numerical Results

Existing Discrete Algorithms

Numerical Results

Alg-D: a Model-based algorithm on Graph

A graph version of SE:

- Assume an "edge capture probability" Ψ_e .
- Shortest path problem with edge cost $-\log(1-\Psi_e)$.

Alg-D (inspired by [AOM17]):

A confidence bound modification:

$$\hat{\Psi}_e = -\log(1 - \tilde{\Psi}_e) - \sqrt{\frac{\ln(T|\mathcal{E}|/\gamma)}{\max(N_e, 1)}}$$

and truncate $\hat{\Psi}_e$ to be positive if needed.

- A regret bound of order $\mathcal{O}(1/\sqrt{T})$ can be proven.
- Degrees of nodes have to grow to obtain all directions of motion in the continuous setting.

Proposed Algorithms

Existing Discrete Algorithms

Numerical Results

Cornell University

UCT: a Model-free Search Algorithm

An MDP version of SE

- Adding a "captured state".
- A capture induces a unit cost.

Upper Confidence Bounds on Trees[KS06]:

- Model-free, directly attempts to learn state-action value Q_e.
- Select actions according to

$$\hat{e} = \underset{e \in \mathcal{E}(v)}{\arg\min} \tilde{Q}_e - \lambda \sqrt{\frac{\ln(N_v)}{\max(N_e, 1)}}.$$

Inefficient data usage, slow convergence.

Outline

Cornell University

1 Problem Setting

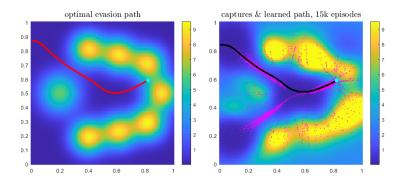
- 2 Proposed Algorithms
- 3 Existing Discrete Algorithms
- 4 Numerical Results

Proposed Algorithms

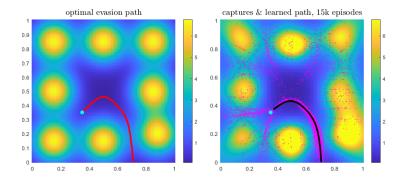
Existing Discrete Algorithms

Numerical Results

Learning Results of Alg-GP



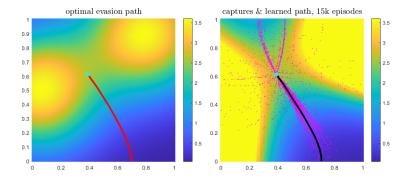
Numerical Results



Numerical Results

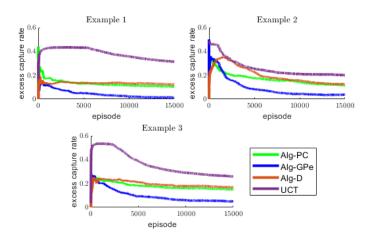
Cornell University

Learning Results of Alg-GP



Numerical Results

Performance Metric Results



Proposed Algorithms

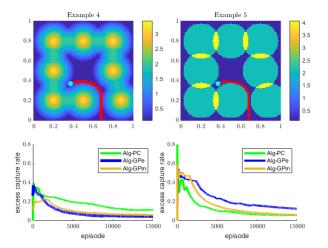
Existing Discrete Algorithms

Numerical Results

Examples with Non-smooth Intensity

Cornell University

Choose Matérn kernel with $\nu = 5/2$:



Conclusions

Cornell University

- We consider a continuous path planning problem with unknown surveillance intensity.
- Our proposed algorithms apply confidence bound techniques to tackle the exploration-exploitation dilemma.
- Alg-GP takes advantage of the spatial correlations in K(x) and results in faster learning.

Most important future extension:

Regret bound for Alg-PC and Alg-GP?

References I

Cornell University

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning.

In International Conference on Machine Learning, pages 263–272. PMLR, 2017.

Levente Kocsis and Csaba Szepesvári.

Bandit based monte-carlo planning.

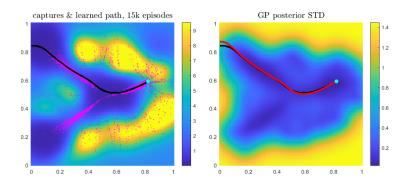
In Machine Learning: ECML 2006: 17th European Conference on Machine Learning Berlin, Germany, September 18-22, 2006 Proceedings 17, pages 282–293. Springer, 2006.

Proposed Algorithms

Existing Discrete Algorithms

Numerical Results

Appendix: GP Posterior STD



Existing Discrete Algorithms

Appendix: GP Posterior Update

Cornell University

- Denote the cells satisfying **Criteria*** as \mathcal{G}_{ob} . \mathcal{G}_{ob} 's centers are X_{ob} .
- Let $\tilde{Z}_{ob}, \tilde{\sigma}_{ob}$ be $\tilde{Z}, \tilde{\sigma}_Z$ values at X_{ob} reshaped as vectors.
- Use $\tilde{\Sigma}$ as an abbreviation of $[\Sigma_{ob} + \text{diag}(\tilde{\sigma}_{ob})]$.

GP update

Posterior mean update

$$M(\boldsymbol{x}) = m(\boldsymbol{x}) + \Sigma(\boldsymbol{x}, X_{ob}) \tilde{\Sigma}^{-1} \big[\tilde{Z}_{ob} - m(X_{ob}) \big].$$

Posterior covariance update

$$\rho^2(\boldsymbol{x}) = \Sigma(\boldsymbol{x}, \boldsymbol{x}) - \Sigma(\boldsymbol{x}, X_{\text{ob}}) \tilde{\Sigma}^{-1} \Sigma(X_{\text{ob}}, \boldsymbol{x}).$$

Proposed Algorithms

Existing Discrete Algorithms

Numerical Results

Appendix: GP Hyperparameter Tuning

Cornell University

Hyperparameter Tuning

Let $\boldsymbol{z}_{\mathsf{ob,c}} = \tilde{Z}_{\mathsf{ob}} - m(X_{\mathsf{ob}})$ be the vector of centered observations. $\max_{\alpha,\beta>0} -\frac{1}{2}\boldsymbol{z}_{\mathsf{ob,c}}^{\mathsf{T}}\tilde{\Sigma}^{-1}\boldsymbol{z}_{\mathsf{ob,c}} - \frac{1}{2}\log|\tilde{\Sigma}| - \frac{n}{2}\log 2\pi,$

- Take a 10×10 decomposition \mathcal{G} .
- Find the average of K(x) in each cell and treat it as the K value at the cell center.
- Use these center values as inputs of GP regression to interpolate K.

